Add enhanced_combined.py

This commit is contained in:
MasihMoafi 2025-05-02 06:44:53 +00:00
commit fd7ba8b68c

460
enhanced_combined.py Normal file
View File

@ -0,0 +1,460 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import re
import json
import ssl
import argparse
import requests
from bs4 import BeautifulSoup
from urllib.parse import quote
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.documents import Document
import traceback
# Disable SSL warnings and proxy settings
ssl._create_default_https_context = ssl._create_unverified_context
requests.packages.urllib3.disable_warnings()
def clear_proxy_settings():
"""Remove proxy environment variables that might cause connection issues."""
for var in ["HTTP_PROXY", "HTTPS_PROXY", "ALL_PROXY", "http_proxy", "https_proxy", "all_proxy"]:
if var in os.environ:
print(f"Removing proxy env var: {var}")
del os.environ[var]
# Run at module load time
clear_proxy_settings()
# Configuration
DOCUMENT_PATHS = [
r'doc1.txt',
r'doc2.txt',
r'doc3.txt',
r'doc4.txt',
r'doc5.txt',
r'doc6.txt'
]
EMBEDDING_MODEL = 'sentence-transformers/paraphrase-multilingual-mpnet-base-v2'
LLM_MODEL = 'gemma3'
CHUNK_SIZE = 1000
OVERLAP = 200
CHROMA_PERSIST_DIR = 'chroma_db'
# Confidence thresholds
THRESHOLDS = {
'direct_answer': 0.7,
'rag_confidence': 0.6,
'web_search': 0.5
}
def query_llm(prompt, model='gemma3'):
"""Query the LLM model directly using Ollama API."""
try:
ollama_endpoint = "http://localhost:11434/api/generate"
payload = {
"model": model,
"prompt": prompt,
"stream": False
}
response = requests.post(ollama_endpoint, json=payload)
if response.status_code == 200:
result = response.json()
return result.get('response', '')
else:
print(f"Ollama API error: {response.status_code}")
return f"Error calling Ollama API: {response.status_code}"
except Exception as e:
print(f"Error querying LLM: {e}")
return f"Error: {str(e)}"
class BM25Retriever:
"""BM25 retriever implementation for text similarity search"""
@classmethod
def from_documents(cls, documents):
"""Create a BM25 retriever from documents"""
retriever = cls()
retriever.documents = documents
retriever.k = 4
return retriever
def get_relevant_documents(self, query):
"""Get relevant documents using BM25 algorithm"""
# Simple BM25-like implementation
scores = []
query_terms = set(re.findall(r'\b\w+\b', query.lower()))
for doc in self.documents:
doc_terms = set(re.findall(r'\b\w+\b', doc.page_content.lower()))
# Calculate term overlap as a simple approximation of BM25
overlap = len(query_terms.intersection(doc_terms))
scores.append((doc, overlap))
# Sort by score and return top k
sorted_docs = [doc for doc, score in sorted(scores, key=lambda x: x[1], reverse=True)]
return sorted_docs[:self.k]
class HybridRetriever:
"""Hybrid retriever combining BM25 and vector search with configurable weights"""
def __init__(self, vector_retriever, bm25_retriever, vector_weight=0.3):
"""Initialize with separate retrievers and weights"""
self._vector_retriever = vector_retriever
self._bm25_retriever = bm25_retriever
self._vector_weight = vector_weight
self._bm25_weight = 1.0 - vector_weight
def get_relevant_documents(self, query):
"""Get relevant documents using weighted combination of retrievers"""
try:
# Get results from both retrievers
vector_docs = self._vector_retriever.get_relevant_documents(query)
bm25_docs = self._bm25_retriever.get_relevant_documents(query)
# Create dictionary to track unique documents and their scores
doc_dict = {}
# Add vector docs with their weights
for i, doc in enumerate(vector_docs):
# Score based on position (inverse rank)
score = (len(vector_docs) - i) * self._vector_weight
doc_id = doc.page_content[:50] # Use first 50 chars as a simple ID
if doc_id in doc_dict:
doc_dict[doc_id]["score"] += score
else:
doc_dict[doc_id] = {"doc": doc, "score": score}
# Add BM25 docs with their weights
for i, doc in enumerate(bm25_docs):
# Score based on position (inverse rank)
score = (len(bm25_docs) - i) * self._bm25_weight
doc_id = doc.page_content[:50] # Use first 50 chars as a simple ID
if doc_id in doc_dict:
doc_dict[doc_id]["score"] += score
else:
doc_dict[doc_id] = {"doc": doc, "score": score}
# Sort by combined score (highest first)
sorted_docs = sorted(doc_dict.values(), key=lambda x: x["score"], reverse=True)
# Return just the document objects
return [item["doc"] for item in sorted_docs]
except Exception as e:
print(f"Error in hybrid retrieval: {e}")
return []
class AgenticQASystem:
"""QA system implementing the specified architecture"""
def __init__(self):
"""Initialize the QA system with retrievers"""
# Load embeddings
self.embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
# Load documents and retrievers
self.documents = self.load_documents()
self.retriever = self.initialize_retriever()
def load_documents(self):
"""Load documents from configured paths with sliding window chunking"""
print("Loading documents...")
docs = []
for path in DOCUMENT_PATHS:
try:
with open(path, 'r', encoding='utf-8') as f:
text = re.sub(r'\s+', ' ', f.read()).strip()
# Sliding window chunking
chunks = [text[i:i+CHUNK_SIZE] for i in range(0, len(text), CHUNK_SIZE - OVERLAP)]
for chunk in chunks:
docs.append(Document(
page_content=chunk,
metadata={"source": os.path.basename(path)}
))
except Exception as e:
print(f"Error loading document {path}: {e}")
print(f"Loaded {len(docs)} document chunks")
return docs
def initialize_retriever(self):
"""Initialize the hybrid retriever with BM25 and direct Chroma queries"""
if not self.documents:
print("No documents loaded, retriever initialization failed")
return None
try:
# Create BM25 retriever
bm25_retriever = BM25Retriever.from_documents(self.documents)
bm25_retriever.k = 4 # Top k results to retrieve
# Initialize vector store with KNN search
import shutil
if os.path.exists(CHROMA_PERSIST_DIR):
print(f"Removing existing Chroma DB to prevent dimension mismatch")
shutil.rmtree(CHROMA_PERSIST_DIR)
# Create vector store directly from Chroma
print("Creating vector store...")
vector_store = Chroma.from_documents(
documents=self.documents,
embedding=self.embeddings,
persist_directory=CHROMA_PERSIST_DIR
)
vector_retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 4})
print(f"Vector retriever created: {type(vector_retriever)}")
# Create hybrid retriever - BM25 (70%) and Vector (30%)
print("Creating hybrid retriever")
hybrid_retriever = HybridRetriever(vector_retriever, bm25_retriever, vector_weight=0.3)
print("Hybrid retriever initialized successfully")
return hybrid_retriever
except Exception as e:
print(f"Error initializing retriever: {e}")
traceback.print_exc()
return None
def estimate_confidence(self, text, query, context=None):
"""Estimate confidence of response"""
# Start with baseline confidence
confidence = 0.5
# Check for uncertainty markers
uncertainty_phrases = [
"نمی‌دانم", "مطمئن نیستم", "ممکن است", "شاید", "احتمالاً",
"فکر می‌کنم", "به نظر می‌رسد"
]
if any(phrase in text.lower() for phrase in uncertainty_phrases):
confidence -= 0.2
# Check for question relevance
query_words = set(re.findall(r'\b\w+\b', query.lower()))
text_words = set(re.findall(r'\b\w+\b', text.lower()))
# Calculate overlap between query and response
if query_words:
overlap_ratio = len(query_words.intersection(text_words)) / len(query_words)
if overlap_ratio > 0.5:
confidence += 0.2
elif overlap_ratio < 0.2:
confidence -= 0.2
# If context provided, check context relevance
if context:
context_words = set(re.findall(r'\b\w+\b', context.lower()))
if context_words:
context_overlap = len(context_words.intersection(text_words)) / len(context_words)
if context_overlap > 0.3:
confidence += 0.2
else:
confidence -= 0.1
# Ensure confidence is within [0,1]
return max(0.0, min(1.0, confidence))
def check_direct_knowledge(self, query):
"""Check if the LLM can answer directly from its knowledge"""
print("Checking LLM's direct knowledge...")
prompt = f"""به این سوال با استفاده از دانش خود پاسخ دهید. فقط به زبان فارسی پاسخ دهید.
سوال: {query}
پاسخ فارسی:"""
response = query_llm(prompt, model=LLM_MODEL)
confidence = self.estimate_confidence(response, query)
print(f"LLM direct knowledge confidence: {confidence:.2f}")
return response, confidence
def rag_query(self, query):
"""Use RAG to retrieve and generate answer"""
if not self.retriever:
print("Retriever not initialized, skipping RAG")
return None, 0.0
print("Retrieving documents for RAG...")
# Retrieve relevant documents
docs = self.retriever.get_relevant_documents(query)
if not docs:
print("No relevant documents found")
return None, 0.0
print(f"Retrieved {len(docs)} relevant documents")
# Prepare context
context = "\n\n".join([doc.page_content for doc in docs])
sources = [doc.metadata.get("source", "Unknown") for doc in docs]
# Query LLM with context
prompt = f"""با توجه به اطلاعات زیر، به سوال پاسخ دهید. فقط به زبان فارسی پاسخ دهید.
اطلاعات:
{context}
سوال: {query}
پاسخ فارسی:"""
response = query_llm(prompt, model=LLM_MODEL)
confidence = self.estimate_confidence(response, query, context)
print(f"RAG confidence: {confidence:.2f}")
return {
"response": response,
"confidence": confidence,
"sources": list(set(sources))
}, confidence
def web_search(self, query):
"""Search the web for an answer"""
print("Searching web for answer...")
# Search DuckDuckGo
search_url = f"https://html.duckduckgo.com/html/?q={quote(query)}"
response = requests.get(search_url, verify=False, timeout=10)
if response.status_code != 200:
print(f"Error searching web: HTTP {response.status_code}")
return None, 0.0
# Parse results
soup = BeautifulSoup(response.text, 'html.parser')
results = []
for element in soup.select('.result__url, .result__a')[:4]:
href = element.get('href') if 'href' in element.attrs else None
if href and not href.startswith('/') and (href.startswith('http://') or href.startswith('https://')):
results.append(href)
elif not href and element.find('a') and 'href' in element.find('a').attrs:
href = element.find('a')['href']
if href and not href.startswith('/'):
results.append(href)
if not results:
print("No web results found")
return None, 0.0
# Crawl top results
web_content = []
for url in results[:3]:
try:
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"}
page = requests.get(url, headers=headers, timeout=10, verify=False)
page.raise_for_status()
soup = BeautifulSoup(page.text, 'html.parser')
# Remove non-content elements
for tag in ['script', 'style', 'nav', 'footer', 'header']:
for element in soup.find_all(tag):
element.decompose()
# Get paragraphs
paragraphs = [p.get_text(strip=True) for p in soup.find_all('p')
if len(p.get_text(strip=True)) > 20]
if paragraphs:
web_content.append(f"[Source: {url}] " + " ".join(paragraphs[:5]))
except Exception as e:
print(f"Error crawling {url}: {e}")
if not web_content:
print("No useful content found from web results")
return None, 0.0
# Query LLM with web content
context = "\n\n".join(web_content)
prompt = f"""با توجه به اطلاعات زیر که از وب بدست آمده، به سوال پاسخ دهید. فقط به زبان فارسی پاسخ دهید.
اطلاعات:
{context}
سوال: {query}
پاسخ فارسی:"""
response = query_llm(prompt, model=LLM_MODEL)
confidence = self.estimate_confidence(response, query, context)
print(f"Web search confidence: {confidence:.2f}")
return {
"response": response,
"confidence": confidence,
"sources": results[:3]
}, confidence
def get_answer(self, query):
"""Main method to get an answer following the specified architecture"""
print(f"Processing query: {query}")
# STEP 1: Try direct LLM knowledge
direct_response, direct_confidence = self.check_direct_knowledge(query)
if direct_confidence >= THRESHOLDS['direct_answer']:
print("Using direct LLM knowledge (high confidence)")
return f"{direct_response}\n\n[Source: LLM Knowledge, Confidence: {direct_confidence:.2f}]"
# STEP 2: Try RAG with local documents
rag_result, rag_confidence = self.rag_query(query)
if rag_result and rag_confidence >= THRESHOLDS['rag_confidence']:
print("Using RAG response (sufficient confidence)")
sources_text = ", ".join(rag_result["sources"][:3])
return f"{rag_result['response']}\n\n[Source: Local Documents, Confidence: {rag_confidence:.2f}, Sources: {sources_text}]"
# STEP 3: Try web search
web_result, web_confidence = self.web_search(query)
if web_result and web_confidence >= THRESHOLDS['web_search']:
print("Using web search response (sufficient confidence)")
sources_text = ", ".join(web_result["sources"])
return f"{web_result['response']}\n\n[Source: Web Search, Confidence: {web_confidence:.2f}, Sources: {sources_text}]"
# STEP 4: Fall back to direct response with warning
print("No high-confidence source found, using direct response with warning")
return f"{direct_response}\n\n[Warning: Low confidence ({direct_confidence:.2f}). Please verify information.]"
# Simple API functions
def get_answer(query):
"""Get an answer for a query"""
system = AgenticQASystem()
return system.get_answer(query)
# Main entry point
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="QA System")
mode_group = parser.add_mutually_exclusive_group(required=True)
mode_group.add_argument("--query", "-q", help="Query to answer")
mode_group.add_argument("--interactive", "-i", action="store_true", help="Run in interactive chat mode")
mode_group.add_argument("--test", "-t", action="store_true", help="Run tests")
args = parser.parse_args()
if args.interactive:
# Simple interactive mode without memory
qa_system = AgenticQASystem()
print("=== QA System ===")
print("Type 'exit' or 'quit' to end")
while True:
user_input = input("\nYou: ")
if not user_input.strip():
continue
if user_input.lower() in ['exit', 'quit', 'خروج']:
break
response = qa_system.get_answer(user_input)
print(f"\nBot: {response}")
elif args.query:
qa_system = AgenticQASystem()
print(qa_system.get_answer(args.query))
elif args.test:
print("Running tests...")