LLMs/Email Read Allowed.ipynb
2025-01-26 15:45:47 +03:30

111 lines
3.8 KiB
Plaintext

],
"source": [
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
"from gtts import gTTS\n",
"from playsound import playsound\n",
"import os\n",
"\n",
"# Load the tokenizer and model for GPT-J\n",
"tokenizer = AutoTokenizer.from_pretrained(\"EleutherAI/gpt-j-6B\")\n",
"model = AutoModelForCausalLM.from_pretrained(\"EleutherAI/gpt-j-6B\")\n",
"\n",
"# Set the padding token to the EOS token\n",
"tokenizer.pad_token = tokenizer.eos_token\n",
"\n",
"def generate_email(professor_name, research_topic, user_name):\n",
" # Email template\n",
" prompt = f\"\"\"\n",
" Dear Professor {professor_name},\n",
"\n",
" I am writing to express my interest in pursuing research under your guidance. My research topic revolves around {research_topic}.\n",
"\n",
" I believe that your work in this area is groundbreaking, and I am eager to contribute to your ongoing projects.\n",
"\n",
" Best regards,\n",
" {user_name}\n",
" \"\"\"\n",
" # Tokenize input\n",
" inputs = tokenizer(prompt, return_tensors=\"pt\", truncation=True, padding=True)\n",
" # Generate email with controlled randomness\n",
" output = model.generate(\n",
" inputs[\"input_ids\"],\n",
" attention_mask=inputs[\"attention_mask\"],\n",
" max_length=len(inputs[\"input_ids\"][0]) + 100,\n",
" do_sample=True, # Set to True to use temperature and top_p\n",
" temperature=0.7,\n",
" top_p=0.9,\n",
" pad_token_id=tokenizer.eos_token_id\n",
" )\n",
" # Decode and return the text\n",
" generated_email = tokenizer.decode(output[0], skip_special_tokens=True)\n",
" return generated_email.strip()\n",
"\n",
"def text_to_speech(text, output_file=\"email.mp3\", lang='en'):\n",
" try:\n",
" if os.path.exists(output_file):\n",
" os.remove(output_file)\n",
" tts = gTTS(text, lang=lang)\n",
" tts.save(output_file)\n",
" print(f\"Speech saved to {output_file}\")\n",
" except Exception as e:\n",
" print(f\"Error generating speech: {e}\")\n",
"\n",
"def play_sound(file_path):\n",
" if not os.path.exists(file_path):\n",
" print(\"File not found.\")\n",
" return\n",
" try:\n",
" # Using playsound\n",
" playsound(file_path)\n",
" print(\"\\nEmail is being read aloud.\")\n",
" except Exception as e:\n",
" print(f\"Error playing sound with playsound: {e}\")\n",
"\n",
"# Input data\n",
"professor_name = input(\"Enter the professor's name: \")\n",
"research_topic = input(\"Enter your research topic: \")\n",
"user_name = input(\"Enter your name: \")\n",
"\n",
"# Generate and print the email\n",
"email = generate_email(professor_name, research_topic, user_name)\n",
"print(\"\\nGenerated Email:\\n\")\n",
"print(email)\n",
"\n",
"# Convert the email to speech\n",
"text_to_speech(email)\n",
"\n",
"# Play the generated speech\n",
"play_sound(\"email.mp3\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "89bc527f-4f37-44d3-8454-52a980cf6038",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.19"
}
},
"nbformat": 4,
"nbformat_minor": 5