diff --git a/email generator.ipynb b/email generator.ipynb deleted file mode 100644 index ba8e081..0000000 --- a/email generator.ipynb +++ /dev/null @@ -1,134 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 2, - "id": "609b9e9d-7f2b-49c3-b08f-97e6e5259242", - "metadata": {}, - "outputs": [ - { - "name": "stdin", - "output_type": "stream", - "text": [ - "Enter the professor's name: Ali Asadpour\n", - "Enter your research topic: AI in architecture\n", - "Enter your name: Masih Moafi\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\Josep\\anaconda3\\envs\\myenv\\lib\\site-packages\\transformers\\generation\\configuration_utils.py:492: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.7` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.\n", - " warnings.warn(\n", - "C:\\Users\\Josep\\anaconda3\\envs\\myenv\\lib\\site-packages\\transformers\\generation\\configuration_utils.py:497: UserWarning: `do_sample` is set to `False`. However, `top_p` is set to `0.9` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `top_p`.\n", - " warnings.warn(\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Generated Email:\n", - "\n", - "Dear Professor Ali Asadpour,\n", - "\n", - " I am writing to express my interest in pursuing research under your guidance. My research topic revolves around AI in architecture.\n", - "\n", - " I believe that your work in this area is groundbreaking, and I am eager to contribute to your ongoing projects.\n", - "\n", - " Best regards,\n", - " Masih Moafi\n", - " _________________________________________\n" - ] - } - ], - "source": [ - "from transformers import AutoModelForCausalLM, AutoTokenizer\n", - "\n", - "# Load the tokenizer and model for GPT-J\n", - "tokenizer = AutoTokenizer.from_pretrained(\"EleutherAI/gpt-j-6B\")\n", - "model = AutoModelForCausalLM.from_pretrained(\"EleutherAI/gpt-j-6B\")\n", - "\n", - "def generate_email(professor_name, research_topic, user_name):\n", - " \"\"\"\n", - " Generate a professional and customizable email using GPT-J.\n", - " Args:\n", - " professor_name (str): The professor's name.\n", - " research_topic (str): The user's research topic.\n", - " user_name (str): The user's name.\n", - " Returns:\n", - " str: The generated email text.\n", - " \"\"\"\n", - " # Email template\n", - " prompt = f\"\"\"\n", - " Dear Professor {professor_name},\n", - "\n", - " I am writing to express my interest in pursuing research under your guidance. My research topic revolves around {research_topic}.\n", - "\n", - " I believe that your work in this area is groundbreaking, and I am eager to contribute to your ongoing projects.\n", - "\n", - " Best regards,\n", - " {user_name}\n", - " \"\"\"\n", - "\n", - " # Encode input\n", - " input_ids = tokenizer.encode(prompt, return_tensors=\"pt\")\n", - "\n", - " # Generate email with controlled randomness\n", - " output = model.generate(\n", - " input_ids,\n", - " max_length=len(input_ids[0]) + 100, # Slightly extend length to avoid truncation\n", - " do_sample=False, # Disable sampling for deterministic output\n", - " temperature=0.7, # Control output randomness\n", - " top_p=0.9, # Use nucleus sampling for coherent generation\n", - " pad_token_id=tokenizer.eos_token_id # Prevent padding issues\n", - " )\n", - "\n", - " # Decode and return the text\n", - " generated_email = tokenizer.decode(output[0], skip_special_tokens=True)\n", - " return generated_email.strip()\n", - "\n", - "# Input data\n", - "professor_name = input(\"Enter the professor's name: \")\n", - "research_topic = input(\"Enter your research topic: \")\n", - "user_name = input(\"Enter your name: \")\n", - "\n", - "# Generate and print the email\n", - "email = generate_email(professor_name, research_topic, user_name)\n", - "print(\"\\nGenerated Email:\\n\")\n", - "print(email)\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f575bf56-5146-49df-803a-f1ceecdbc963", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.19" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -}